Aplikasi Mobile Pemantauan Kualitas Udara: Tinjauan Sistematis Implementasi API dan Tren Pengembangan

(1) Universitas Pendidikan Indonesia
(2) Universitas Pendidikan Indonesia
(3) Universitas Pendidikan Indonesia

Abstract
Polusi udara sebagai masalah kesehatan global yang signifikan telah mendorong pengembangan aplikasi mobile dan implementasi API untuk pemantauan kualitas udara yang lebih efektif. Perkembangan teknologi sensor, IoT, dan komputasi mobile membuka peluang untuk pemantauan kualitas udara yang lebih responsif. Tinjauan sistematis ini menganalisis implementasi API dan aplikasi mobile dalam pemantauan kualitas udara selama periode 2011-2022, berfokus pada arsitektur teknologi, fitur aplikasi, dan tantangan implementasi. Pencarian sistematis dengan metodologi PRISMA pada database Scopus menghasilkan 43 artikel, dengan 12 artikel jurnal memenuhi kriteria inklusi untuk analisis mendalam. Hasil menunjukkan dominasi platform Android (50%) dan arsitektur RESTful API (75%) dengan tren menuju integrasi WebSocket dan GraphQL untuk komunikasi real-time. Mayoritas aplikasi (66,7%) mengintegrasikan data dari beberapa sumber, menggunakan visualisasi berbasis peta dan indikator warna. Parameter kualitas udara yang paling umum dipantau meliputi suhu (33,3%), PM2.5 (25%), dan kelembaban (25%). Tantangan utama meliputi pemrosesan data real-time (33,3%), akurasi sensor (25%), dan integrasi data (25%). Teridentifikasi peningkatan personalisasi berdasarkan lokasi dan profil kesehatan, meskipun evaluasi dampak jangka panjang masih terbatas. Kesenjangan signifikan ditemukan dalam standardisasi API dan implementasi di negara berkembang, dengan tidak adanya studi dari Afrika, Amerika Selatan, dan Oceania. Hasil penelitian memberikan dasar untuk pengembangan aplikasi pemantauan kualitas udara yang lebih efektif.
Keywords
References
Alqasimi, A., Al Marzouqi, K., Alhammadi, A., Aljasmi, A., Alnabulsi, A., & Al-Ali, A. R. (2025). An IoT-Based Mobile Air Pollution Monitoring System. 1228, 221–233. Scopus. https://doi.org/10.1007/978-981-97-4784-9_16
Anh, L. H., Hai, C. M., Truong, N. P., Nguyen, T.-H., & Nguyen, P. L. (2020). Optimal Deployment of Vehicular Mobile Air Quality Monitoring Systems. 427–432. Scopus. https://doi.org/10.1109/NICS51282.2020.9335915
Bayir, M. A., Demirbas, M., & Cosar, A. (2011). A Web-Based Personalized Mobility Service for Smartphone Applications. The Computer Journal, 54(5), 800–814. https://doi.org/10.1093/comjnl/bxq027
Bumberger, J., Abbrent, M., Brinckmann, N., Hemmen, J., Kunkel, R., Lorenz, C., Lünenschloss, P., Palm, B., Schnicke, T., Schulz, C., van der Schaaf, H., & Schäfer, D. (2025). Digital ecosystem for FAIR time series data management in environmental system science. SoftwareX, 29. Scopus. https://doi.org/10.1016/j.softx.2025.102038
Camacho-Magriñán, P., Sales-Lerida, D., León-Jiménez, A., & Sanchez-Morillo, D. (2025). Indoor Environmental Monitoring and Chronic Respiratory Diseases: A Systematic Review. Technologies, 13(3). Scopus. https://doi.org/10.3390/technologies13030122
Carro, G., Schalm, O., Jacobs, W., & Demeyer, S. (2022). Exploring actionable visualizations for environmental data: Air quality assessment of two Belgian locations. Environmental Modelling and Software, 147. Scopus. https://doi.org/10.1016/j.envsoft.2021.105230
Chanel, O., & Cucchi, I. (2024). Better accounting for long-term health effects in economic assessments: An illustration for air pollution in the Canton of Geneva. Public Health, 233, 31–37. Scopus. https://doi.org/10.1016/j.puhe.2024.04.039
Che, W., Frey, H. C., Fung, J. C. H., Ning, Z., Qu, H., Lo, H. K., Chen, L., Wong, T.-W., Wong, M. K. M., Lee, O. C. W., Carruthers, D., Cheung, F., Chan, J. W. M., Yeung, D. W., Fung, Y. H., Zhang, X., Stocker, J., Hood, C., Hohenberger, T. L., … Lau, A. K. H. (2020). PRAISE-HK: A personalized real-time air quality informatics system for citizen participation in exposure and health risk management. Sustainable Cities and Society, 54, 101986. https://doi.org/10.1016/j.scs.2019.101986
Chen, C., Chen, H., van Donkelaar, A., Burnett, R. T., Martin, R. V., Chen, L., Tjepkema, M., Kirby-Mcgregor, M., Li, Y., Kaufman, J. S., & Benmarhnia, T. (2023). Using Parametric g-Computation to Estimate the Effect of Long-Term Exposure to Air Pollution on Mortality Risk and Simulate the Benefits of Hypothetical Policies: The Canadian Community Health Survey Cohort (2005 to 2015). Environmental Health Perspectives, 131(3). Scopus. https://doi.org/10.1289/EHP11095
Chen, Y.-C., Chin, W.-S., Pan, S.-C., Wu, C.-D., & Guo, Y.-L. L. (2023). Long-term exposure to air pollution and the occurrence of metabolic syndrome and its components in Taiwan. Environmental Health Perspectives, 131(1). Scopus. https://doi.org/10.1289/EHP10611
Chibueze Izah, S. (2025). Smart Technologies in Environmental Monitoring: Enhancing Real-Time Data for Health Management. In Environmental Science and Engineering: Vol. Part F233 (pp. 199–224). Scopus. https://doi.org/10.1007/978-3-031-81966-7_8
Chockalingam, L., Sakthi Ganesh, M., & Venkata Krishna, P. (2014). Prediction of pollution using smart phones. International Journal of Applied Engineering Research, 9(19), 6063–6072. Scopus.
Chowdhury, M. R., De, S., Shukla, N. K., & Biswas, R. N. (2019). Energy-Efficient Air Pollution Monitoring with Optimum Duty-Cycling on a Sensor Hub. 2018 24th National Conference on Communications, NCC 2018. Scopus. https://doi.org/10.1109/NCC.2018.8600133
Cui, H., Zhang, L., Li, W., Yuan, Z., Wu, M., Wang, C., Ma, J., & Li, Y. (2021). A new calibration system for low-cost Sensor Network in air pollution monitoring. Atmospheric Pollution Research, 12(5), 101049. https://doi.org/10.1016/j.apr.2021.03.012
Davila, S., Ilić, J. P., & Bešlić, I. (2015). Real-time dissemination of air quality information using data streams and Web technologies: Linking air quality to health risks in urban areas. Archives of Industrial Hygiene and Toxicology, 66(2), 171–180. https://doi.org/10.1515/aiht-2015-66-2633
De Vito, S., Del Giudice, A., D’Elia, G., Esposito, E., Fattoruso, G., Ferlito, S., Formisano, F., Loffredo, G., Massera, E., D’Auria, P., & Di Francia, G. (2024). Future Low-Cost Urban Air Quality Monitoring Networks: Insights from the EU’s AirHeritage Project. Atmosphere, 15(11). Scopus. https://doi.org/10.3390/atmos15111351
Demidchik, N. N., Kudaibergenova, M. D., & Kintonova, A. Zh. (2021). Using the Internet of Things (IoT) for Natural Resources Monitoring System. SIST 2021 - 2021 IEEE International Conference on Smart Information Systems and Technologies. Scopus. https://doi.org/10.1109/SIST50301.2021.9465979
Díaz, J. J., Mura, I., Franco, J. F., & Akhavan-Tabatabaei, R. (2021). aiRe—A web-based R application for simple, accessible and repeatable analysis of urban air quality data. Environmental Modelling and Software, 138. Scopus. https://doi.org/10.1016/j.envsoft.2021.104976
Evagelopoulos, V., Charisiou, N. D., Logothetis, M., Evagelopoulos, G., & Logothetis, C. (2022). Cloud-Based Decision Support System for Air Quality Management. Climate, 10(3), 39. https://doi.org/10.3390/cli10030039
Figueiredo, R., Alves, A., Monteiro, V., Pinto, J., Afonso, J., & Afonso, J. (2021). Development and Evaluation of Smart Home IoT Systems applied to HVAC Monitoring and Control. EAI Endorsed Transactions on Energy Web, 8(34), 167205. https://doi.org/10.4108/eai.19-11-2020.167205
Flores-Cortez, O. O., Pocasangre, C. O., Arevalo, F., Castillo, B. A., & Segovia, L. D. (2024). Mobile Air Quality Sensor System for GIS Mapping, Study Case in San Salvador City. IEEE Andescon, ANDESCON 2024 - Proceedings. Scopus. https://doi.org/10.1109/ANDESCON61840.2024.10755697
Gomes, J. B. A., Rodrigues, J. J. P. C., Rabêlo, R. A. L., Tanwar, S., Al-Muhtadi, J., & Kozlov, S. (2021). A novel Internet of things-based plug-and-play multigas sensor for environmental monitoring. Transactions on Emerging Telecommunications Technologies, 32(6). Scopus. https://doi.org/10.1002/ett.3967
Jabbar, W. A., Subramaniam, T., Ong, A. E., Shu’Ib, M. I., Wu, W., & de Oliveira, M. A. (2022). LoRaWAN-Based IoT System Implementation for Long-Range Outdoor Air Quality Monitoring. Internet of Things (Netherlands), 19. Scopus. https://doi.org/10.1016/j.iot.2022.100540
Jaimini, U., Thirunarayan, K., Kalra, M., Venkataraman, R., Kadariya, D., & Sheth, A. (2018). “How Is My Child’s Asthma?” Digital Phenotype and Actionable Insights for Pediatric Asthma. JMIR Pediatrics and Parenting, 1(2), e11988. https://doi.org/10.2196/11988
Kim, K., Kang, S., & Lee, K. (2013). Geo-based image blending in a mobile cloud environment. Remote Sensing Letters, 4(11), 1117–1126. https://doi.org/10.1080/2150704X.2013.845922
Krupp, B. (2022). Fine-Grained Air Quality Monitoring with Low-Cost Sensors and IoT: Trends, Challenges, and Future Directions. 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), 1–6. https://doi.org/10.23919/SpliTech55088.2022.9854310
Kulkarni, V., Lakshmi, A. S., Lakshmi, C. B. N., Panneerselvam, S., Kanan, M., Flah, A., & Elnaggar, M. F. (2024). Air Quality Decentralized Forecasting: Integrating IoT and Federated Learning for Enhanced Urban Environmental Monitoring. Engineering, Technology and Applied Science Research, 14(4), 16077–16082. Scopus. https://doi.org/10.48084/etasr.7869
Kumari, S., Choudhury, A., Karki, P., Simon, M., Chowdhry, J., Nandra, A., Sharma, P., Sengupta, A., Yadav, A., Raju, M. P., Gupta, J., & Garg, M. C. (2025). Next-Generation Air Quality Management: Unveiling Advanced Techniques for Monitoring and Controlling Pollution. Aerosol Science and Engineering. Scopus. https://doi.org/10.1007/s41810-024-00281-1
Lemos, J., de Souza, V. B., Falcetta, F. S., de Almeida, F. K., Lima, T. M., & Gaspar, P. D. (2024). Enhancing Workplace Safety through Personalized Environmental Risk Assessment: An AI-Driven Approach in Industry 5.0. Computers, 13(5). Scopus. https://doi.org/10.3390/computers13050120
Lishev, S. N., Spasov, G. V., Petrova, G. I., & Pavlova, P. E. (2023). Air parameters monitoring in urban area based on LoRaWAN: Data collection for environmental assessment. 2023 32nd International Scientific Conference Electronics, ET 2023 - Proceedings. Scopus. https://doi.org/10.1109/ET59121.2023.10279269
Lobato, S., Salomón-Soto, V. M., Espinosa-Méndez, C. M., Herrera-Moreno, M. N., García-Solano, B., Pérez-González, E., Comba-Marcó-del-Pont, F., Montesano-Villamil, M., Mora-Ramírez, M. A., Mancilla-Simbro, C., & Álvarez-Valenzuela, R. (2024). Molecular Pathways Linking High-Fat Diet and PM2.5 Exposure to Metabolically Abnormal Obesity: A Systematic Review and Meta-Analysis. Biomolecules, 14(12). Scopus. https://doi.org/10.3390/biom14121607
Loganathan, V., Ravikumar, D., Devaraj, V., Kannan, U. M., & Kesavan, R. (2023). Development of a Compact IoT-Enabled Device to Monitor Air Pollution for Environmental Sustainability †. Engineering Proceedings, 58(1). Scopus. https://doi.org/10.3390/ecsa-10-15996
Madhwal, S., Tripathi, S. N., Bergin, M. H., Bhave, P., De Foy, B., Reddy, T. V. R., Chaudhry, S. K., Jain, V., Garg, N., & Lalwani, P. (2024). Evaluation of PM2.5 spatio-temporal variability and hotspot formation using low-cost sensors across urban-rural landscape in lucknow, India. Atmospheric Environment, 319, 120302. https://doi.org/10.1016/j.atmosenv.2023.120302
Mahajan, S., Gabrys, J., & Armitage, J. (2021). Airkit: A citizen-sensing toolkit for monitoring air quality. Sensors, 21(12). Scopus. https://doi.org/10.3390/s21124044
Malings, C., Westervelt, D. M., Hauryliuk, A., Presto, A. A., Grieshop, A., Bittner, A., Beekmann, M., & Subramanian, R. (2020). Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa. Atmospheric Measurement Techniques, 13(7), 3873–3892. Scopus. https://doi.org/10.5194/amt-13-3873-2020
Manuel, A., Sathyaraj, G. F., Joseph, R. C., Philip, S. A., & Thomas, S. M. (2023). AI-Integrated IoT-Enabled Smart Mask for SoS Alerting and Disease Prediction Based on Air Pollutants. Proceedings of 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication, IConSCEPT 2023. Scopus. https://doi.org/10.1109/IConSCEPT57958.2023.10170469
Masri, S., Cox, K., Flores, L., Rea, J., & Wu, J. (2022). Community-Engaged Use of Low-Cost Sensors to Assess the Spatial Distribution of PM2.5 Concentrations across Disadvantaged Communities: Results from a Pilot Study in Santa Ana, CA. Atmosphere, 13(2), 304. https://doi.org/10.3390/atmos13020304
Meena, K. K., Bairwa, D., & Agarwal, A. (2024). A machine learning approach for unraveling the influence of air quality awareness on travel behavior. Decision Analytics Journal, 11. Scopus. https://doi.org/10.1016/j.dajour.2024.100459
Ossoli, A., Cetti, F., & Gomaraschi, M. (2022). Air Pollution: Another Threat to HDL Function. International Journal of Molecular Sciences, 24(1), 317. https://doi.org/10.3390/ijms24010317
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., & Brennan, S. E. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj, 372.
Park, Y., Song, I., Yi, J., Yi, S.-J., & Kim, S.-Y. (2020). Web-based visualization of scientific research findings: National-scale distribution of air pollution in South Korea. International Journal of Environmental Research and Public Health, 17(7). Scopus. https://doi.org/10.3390/ijerph17072230
Pendekanti, S. K., Kamath, S. K., & Raj, R. N. (2024). Recent Developments in IoT-Based Air Quality Monitoring and Control. Proceedings - ICNEWS 2024: 2nd International Conference on Networking, Embedded and Wireless Systems: Wireless Technology - Building a Digital World. Scopus. https://doi.org/10.1109/ICNEWS60873.2024.10730893
Pérez, A. P., Fernández, E. I., Ali Shah, S. M., Casado-Mansilla, D., Valera, A. J. J., & López-De-Ipiña, D. (2024). Performance Assessment of Wearable Atmotube Pro Sensor for Air Quality Citizen Science Applications. 2024 9th International Conference on Smart and Sustainable Technologies, SpliTech 2024. Scopus. https://doi.org/10.23919/SpliTech61897.2024.10612297
Petrova-Antonova, D., Baychev, S., Pavlova, I., & Pavlov, G. (2020). Air Quality Visual Analytics with Kibana. 2020 5th International Conference on Smart and Sustainable Technologies, SpliTech 2020. Scopus. https://doi.org/10.23919/SpliTech49282.2020.9243708
Pradhan, A., & Unhelkar, B. (2020). The role of IoT in smart cities: Challenges of air quality mass sensor technology for sustainable solutions. In Security and Privacy Issues in IoT Devices and Sensor Networks (pp. 285–307). Scopus. https://doi.org/10.1016/B978-0-12-821255-4.00013-4
Purkayastha, K. D., Mishra, R. K., Shil, A., & Pradhan, S. N. (2021). IoT Based Design of Air Quality Monitoring System Web Server for Android Platform. Wireless Personal Communications, 118(4), 2921–2940. https://doi.org/10.1007/s11277-021-08162-3
Qu, L., Chai, F., Liu, S., Duan, J., Meng, F., & Cheng, M. (2023). Comprehensive evaluation method of urban air quality statistics based on environmental monitoring data and its application. Journal of Environmental Sciences (China), 123, 500–509. Scopus. https://doi.org/10.1016/j.jes.2022.10.003
Ramesh, R., Vallabhu, H., Unni, A., & Nalinakshan, S. (2024). IoT- Enabled Air Quality Monitoring: Advancements, Applications, and Challenges. 561–567. Scopus. https://doi.org/10.1109/ICCES63552.2024.10860055
Relvas, H., Lopes, D., & Armengol, J. M. (2025). Empowering communities: Advancements in air quality monitoring and citizen engagement. Urban Climate, 60. Scopus. https://doi.org/10.1016/j.uclim.2025.102344
Rose, M., Filiatreault, A., Williams, A., Guénette, J., & Thomson, E. M. (2023). Modulation of insulin signaling pathway genes by ozone inhalation and the role of glucocorticoids: A multi-tissue analysis. Toxicology and Applied Pharmacology, 469. Scopus. https://doi.org/10.1016/j.taap.2023.116526
Rujivorakul, V., & Vorapatratorn, S. (2024). Online Low-Cost Air Quality Monitoring System Using LoRa-Based Communication. 540–544. Scopus. https://doi.org/10.1109/JCSSE61278.2024.10613672
Salvi, S. S., Tiwari, H. U., & Bobade, S. S. (2025). Integrated IoT System for Real-Time Air Quality Assessment in Diverse Environments. International Research Journal of Multidisciplinary Scope, 6(1), 1362–1372. Scopus. https://doi.org/10.47857/irjms.2025.v06i01.02831
Sanni, M. I., Pramudya, R. D., Jamaludin, D. A., Sihotang, S. V., & Hikam, I. N. (2024). Integrating Technology and Environmental Policy for Effective Air Quality Monitoring in Indonesia. 2024 3rd International Conference on Creative Communication and Innovative Technology, ICCIT 2024. Scopus. https://doi.org/10.1109/ICCIT62134.2024.10701111
Santana, E. S., Arenas, L. A. O., & Liberado, E. V. (2024). Energy Harvesting Integration with Air Quality Monitoring Systems. 2024 International Conference on Smart Applications, Communications and Networking, SmartNets 2024. Scopus. https://doi.org/10.1109/SmartNets61466.2024.10577716
Sembiring, I., Manongga, D., Rahardja, U., & Aini, Q. (2024). Understanding Data-Driven Analytic Decision Making on Air Quality Monitoring an Empirical Study. APTISI Transactions on Technopreneurship, 6(3), 418–431. Scopus. https://doi.org/10.34306/att.v6i3.459
Simitha, K. M., & Subodh Raj, M. S. (2019). IoT and WSN Based Air Quality Monitoring and Energy Saving System in SmartCity Project. 1431–1437. Scopus. https://doi.org/10.1109/ICICICT46008.2019.8993151
Siregar, H., Setiawan, W., & Dirgantari, P. D. (2020). Isu Proses Bisnis Berbasis Artificial Intelligence untuk Menyosong Era Industri 4.0. Jurnal Bisnis Strategi, 29(2), 89–100.
Sladojevic, S., Arsenovic, M., Nikolic, D., Anderla, A., & Stefanovic, D. (2024). Advancements in Mobile-Based Air Pollution Detection: From Literature Review to Practical Implementation. Journal of Sensors, 2024. Scopus. https://doi.org/10.1155/2024/4895068
Sowinski-Mydlarz, V., Vassilev, V., & Gasiorowski, P. (2025). Air Quality Data Integration and Visualization in Urban Environment. 421, 37–50. Scopus. https://doi.org/10.1007/978-981-96-0143-1_4
Sudantha, B., Manchanayaka, M., Yang, C.-Y., Premachandra, C., Firdhous, M., & Sumathipala, K. (2023). IoT Empowered Open Sensor Network for Environmental Air Pollution Monitoring System in Smart Cities. Proceedings of ICITR 2023 - 8th International Conference on Information Technology Research: The Next Evolution in Digital Transformation. Scopus. https://doi.org/10.1109/ICITR61062.2023.10382893
Tasnim, S., Ferguson, A., Gordon, B., Gordon, C., Ahmed, K., & Mkpong-Ruffin, I. (2021). A Smart Environment Monitoring Application for Mobile Internet of Things. 182, 223–233. Scopus. https://doi.org/10.1007/978-3-030-65796-3_21
Tsujimoto, R., Fukuda, T., & Yabuki, N. (2024). Server-enabled mixed reality for flood risk communication: On-site visualization with digital twins and multi-client support. Environmental Modelling and Software, 177. Scopus. https://doi.org/10.1016/j.envsoft.2024.106054
Ustulin, M., Park, S. Y., Chin, S. O., Chon, S., Woo, J., & Rhee, S. Y. (2018). Air Pollution Has a Significant Negative Impact on Intentional Efforts to Lose Weight: A Global Scale Analysis. Diabetes & Metabolism Journal, 42(4), 320. https://doi.org/10.4093/dmj.2017.0104
Vajs, I., Drajic, D., & Cica, Z. (2023). Data-Driven Machine Learning Calibration Propagation in A Hybrid Sensor Network for Air Quality Monitoring. Sensors, 23(5), 2815. https://doi.org/10.3390/s23052815
Varadarajan, M. N., Karthik, R., Pradeep, S., Ameen, N., Venkatramulu, S., Reddy, S. T., Kumar, M. J., Prasad, A. R., & Rajaram, A. (2024). Smart Healthcare Data Protection and Analysis Through Fuzzy-Based Cyber Security. Journal of Environmental Protection and Ecology, 25(5), 1604–1614. Scopus.
Venkataramanan, R., Thirunarayan, K., Jaimini, U., Kadariya, D., Yip, H. Y., Kalra, M., & Sheth, A. (2019). Determination of Personalized Asthma Triggers From Multimodal Sensing and a Mobile App: Observational Study. JMIR Pediatrics and Parenting, 2(1), e14300. https://doi.org/10.2196/14300
Voss, M., Bosak, O., Hoebertz, M., Mohsenzadeh, F., Schnebbe, M., Poeppelbuss, J., & Eisenbeiss, M. (2022). Design Principles for Personalized Assistance Systems That Respect Privacy. AIS Transactions on Human-Computer Interaction, 14(4), 461–489. Scopus. https://doi.org/10.17705/1thci.00176
Wang, A., Paul, S., deSouza, P., Machida, Y., Mora, S., Duarte, F., & Ratti, C. (2023). Key Themes, Trends, and Drivers of Mobile Ambient Air Quality Monitoring: A Systematic Review and Meta-Analysis. Environmental Science and Technology, 57(26), 9427–9444. Scopus. https://doi.org/10.1021/acs.est.2c06310
WHO. (2021). WHO global air quality guidelines: Particulate matter (PM2. 5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization.
Wijaya, C., Andriyadi, A., Chen, S.-Y., Wang, I.-J., & Yang, C.-T. (2024). Edge AI-Driven Air Quality Monitoring and Notification System: A Multilocation Campus Perspective. 214, 256–261. Scopus. https://doi.org/10.1007/978-3-031-64766-6_25
William, P., Kiran, Y. V. U., Rana, A., Gangodkar, D., Khan, I., & Ashutosh, K. (2022). Design and Implementation of IoT based Framework for Air Quality Sensing and Monitoring. 197–200. Scopus. https://doi.org/10.1109/ICTACS56270.2022.9988646
Wolf, K., Hoffmann, B., Andersen, Z. J., Atkinson, R. W., Bauwelinck, M., Bellander, T., Brandt, J., Brunekreef, B., Cesaroni, G., Chen, J., De Faire, U., De Hoogh, K., Fecht, D., Forastiere, F., Gulliver, J., Hertel, O., Hvidtfeldt, U. A., Janssen, N. A. H., Jørgensen, J. T., … Ljungman, P. L. S. (2021). Long-term exposure to low-level ambient air pollution and incidence of stroke and coronary heart disease: A pooled analysis of six European cohorts within the ELAPSE project. The Lancet Planetary Health, 5(9), e620–e632. https://doi.org/10.1016/S2542-5196(21)00195-9
Wu, K., Ho, H. C., Su, H., Huang, C., Zheng, H., Zhang, W., Tao, J., Hossain, M. Z., Zhang, Y., Hu, K., Yang, M., Wu, Q., Xu, Z., & Cheng, J. (2022). A systematic review and meta-analysis of intraday effects of ambient air pollution and temperature on cardiorespiratory morbidities: First few hours of exposure matters to life. eBioMedicine, 86, 104327. https://doi.org/10.1016/j.ebiom.2022.104327
Yeung, J., Makke, O., MacNeille, P., & Gusikhin, O. (2017). SmartDeviceLink as an Open Innovation Platform for Connected Car Features and Mobility Applications. SAE International Journal of Passenger Cars - Electronic and Electrical Systems, 10(1), 231–239. https://doi.org/10.4271/2017-01-1649
Yogesh, K. M., Singh, D. M., Rao, A., Keerthana, S. S., Banu, S., & Stephan, T. (2025). Improving Air Quality Prediction Through User-Centric Data and Machine Learning. 413 SIST, 737–751. Scopus. https://doi.org/10.1007/978-981-97-7717-4_53
Zalakeviciute, R., Alexandrino, K., Acosta-Vargas, P., Pérez-Medina, J.-L., & Hernandez, W. (2020). Evaluation of smart phone open source applications for air pollution. 959, 474–484. Scopus. https://doi.org/10.1007/978-3-030-20040-4_43
Zamri, H., Shaffiei, Z. A., Daud, N. A., & Ahmad, N. D. (2022). AirAwareMalaysia: Data Visualization and Air Quality Awareness on Air Pollution in Selangor Using Big Data Analytics. 457 LNNS, 223–233. Scopus. https://doi.org/10.1007/978-3-031-00828-3_22
Article Metrics
Abstract View

DOI: 10.57235/qistina.v4i1.6179
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Farhan Muzhaffar Tiras Putra, Herbert Siregar, Asep Wahyudin

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.