Journal Review: Developments in TiSi2 Material Synthesis and Application Potential in Defence Industry Sector
Abstract
Titanium disilicide (TiSi2) is a promising intermetallic material due to its unique properties, such as high temperature oxidation and corrosion resistance, good thermal and electrical conductivity, and low density. In this review article, various aspects of TiSi2 are discussed, including the properties and characteristics of the material, synthesis methods, applications, and development opportunities. The method used in writing this article is the Systematic Literature Review (SLR) by searching, collecting, and evaluating several sources related to the research object. Recent development in TiSi2 applications include semiconductors (Salicide technology which has lower resistivity), longer-lasting lithium-ion battery anodes, high temperature resistant coatings and components, hydrogen generators and defence system components. With the potential to be produced locally using Indonesian resources, such as Ilmenite and silica sand, TiSi2 can promote self-sufficiency of the national strategic industry, including in the defence and energy sectors.
Keywords
Full Text:
PDFReferences
Bahfie, F., Harahap, E. A., Alfarisy, M. I., & Arham, L. O. (2022). Pengolahan Pasir Besi Untuk Meningkatkan Kadar Titanium (Ti) Dengan Metode Pemisahan Magnetik Secara Basah [Processing Of Iron Sand To Increase Titanium (Ti) Levels With Wet Magnetic Separation Method]. Inovasi Pembangunan: Jurnal Kelitbangan (JIP).
Balkus, B. (2022, August 8). The Mineral Conflict Is Here. www.palladiummag.com. https://www.palladiummag.com/2022/08/08/the-mineral-conflict-is-here/
Becker, S., Rahmel, A., & Schiitze, M. (1992). Oxidation of TiSi2 and MoSi2. SOLID STATE IONICS, 53–56, 280–289.
Chaia, N., Bouizi, Y., Mathieu, S., & Vilasi, M. (2015). Isothermal and cyclic oxidation behaviour of hot-pressed MSi2 compounds (with M = V, Ti, Cr). Intermetallics, 65, 35–41. https://doi.org/10.1016/j.intermet.2015.05.005
Ekström, M., & Zetterling, C. M. (2023). Self-aligned contacts to ion implanted S/D regions in 4H-SiC. Materials Science in Semiconductor Processing, 168, 107849. https://doi.org/10.1016/J.MSSP.2023.107849
Geosriwijaya.com. (2024). Potensi dan Perkembangan Industri Ilmenit Indonesia Sebagai Penghasil Titanium– GN Consulting [Potential and Development of the Indonesian Ilmenite Industry as a Titanium Producer]. https://geosriwijaya.com/2024/04/potensi-dan-perkembangan-industri-ilmenit-indonesia-sebagai-penghasil-titanium/
He, J., Guo, X., & Qiao, Y. (2020). Oxidation behavior and adhesion performance of TiSi2–NbSi2 composite coating prepared via magnetron sputtering and then pack cementation. Journal of Alloys and Compounds, 820. https://doi.org/10.1016/j.jallcom.2019.153425
He, Z., Li, C., Lan, B., Zhang, C., Qi, J., Huang, Y., Feng, J., & Cao, J. (2020). In situ TiSi2 microarray reinforced Si–Ti eutectic colonies in Cf/C composite joints for high-temperature application. Ceramics International, 46(8), 10495–10502. https://doi.org/10.1016/j.ceramint.2020.01.049
Kim, M. S., Hwang, S. H., Kim, S. H., Kim, J. H., Park, E., Han, K. H., & Yu, H. Y. (2023). Excellent Improvement of Contact Resistivity and Thermal Stability for High Temperature Process After Silicidation of TiSi2 Through Ta Interlayer for Diffusion Barrier. IEEE Electron Device Letters, 44(7), 1040–1043. https://doi.org/10.1109/LED.2023.3279143
Kozień, D., Czekaj, I., Gancarz, P., Ziąbka, M., Wieczorek, W., Pasiut, K., Zientara, D., & Pędzich, Z. (2022). Ceramic Matrix Composites Obtained by the Reactive Sintering of Boron Carbide with Intermetallic Compounds from the Ti-Si System. Materials 2022, Vol. 15, Page 8657, 15(23), 8657. https://doi.org/10.3390/MA15238657
Lei, Y., Wang, C., Ma, W., Wu, J., Wei, K., Li, S., Lv, G., & Morita, K. (2019). A novel approach to prepare high-purity Si and Si/TiSi2 materials simultaneously using Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 798, 333–341. https://doi.org/10.1016/J.JALLCOM.2019.05.291
Li, Z., Lei, Y., Ma, W., Zhang, Y., & Wang, C. (2021). Preparation of high-purity TiSi2 and eutectic Si–Ti alloy by separation of Si–Ti alloy for clean utilization of Ti-bearing blast furnace slag. Separation and Purification Technology, 265, 118473. https://doi.org/10.1016/J.SEPPUR.2021.118473
Li, Z., Lei, Y., Ma, W., Zhang, Y., Wang, S., Ren, Y., & Lv, G. (2022). An approach to prepare high-purity TiSi2 for clean utilization of Ti-bearing blast furnace slag. Green Chemistry, 24(8), 3344–3357. https://doi.org/10.1039/D1GC04853H
Liao, Y. (2006). C49-C54 Titanium Disilicide (TiSi2). https://www.globalsino.com/EM/page150.html
Liu, J., Bai, Y., Chen, P., Cui, N., & Yin, H. (2013). Reaction synthesis of TiSi2 and Ti5Si3 by ball-milling and shock loading and their photocatalytic activities. Journal of Alloys and Compounds, 555, 375–380. https://doi.org/10.1016/j.jallcom.2012.12.100
Mahajan, Y. R., & Johnson, R. (2020). Defense, Security, Aerospace and Energy Applications Handbook of Advanced Ceramics and Composites (1st ed.). Springer.
Mann, R. W., Clevenger, L. A., & Hong, Q. Z. (1993). The C49 to C54-TiSi2 transformation in self-aligned silicide applications. Journal of Applied Physics, 73(7), 3566–3568. https://doi.org/10.1063/1.352910
Maranda, S. (2023). Pembangunan Smelter Titanium di Bangka Belitung Ditargetkan Selesai Tahun Ini | tempo.co [Titanium Smelter Construction in Bangka Belitung Targeted to be Completed This Year]. https://www.tempo.co/ekonomi/pembangunan-smelter-titanium-di-bangka-belitung-ditargetkan-selesai-tahun-ini-215730
Medina, A. F. (2024, February 2). Indonesia’s Electric Battery Industrial Strategy. Https://Www.Aseanbriefing.Com/. https://www.aseanbriefing.com/news/indonesias-electric-battery-industrial-strategy/
Mishra, A. K., Monika, & Patial, B. S. (2024). A review on recent advances in anode materials in lithium ion batteries. Materials Today Electronics, 7, 100089. https://doi.org/10.1016/J.MTELEC.2024.100089
Pratiwi, A. (2023, June 5). 8 Daerah Penghasil Pasir Besi Terbesar di Indonesia 2023 [8 Largest Iron Sand Producing Regions in Indonesia 2023]. https://www.inilah.com/daerah-penghasil-pasir-besi-terbesar-di-indonesia
Sasongko, Y. A. T., & Agung Dwi E. (2024). Punya Potensi Besar Nikel dan Pasir Silika, Indonesia Siap Jadi Pemain Global Kendaraan Listrik dan Panel Surya [Having huge potential for nickel and silica sand, Indonesia is ready to become a global player in electric vehicles and solar panels]. https://nasional.kompas.com/read/2024/12/15/09582401/punya-potensi-besar-nikel-dan-pasir-silika-indonesia-siap-jadi-pemain-global
Simanjuntak, S. D. A. (2024, December 11). RI Siap Kembangkan Industri Semikonduktor, AS dan Jepang Jadi Co-Investor [Republic of Indonesia Ready to Develop Semiconductor Industry, US and Japan Become Co-Investors]. https://ekonomi.bisnis.com/read/20241211/9/1823407/ri-siap-kembangkan-industri-semikonduktor-as-dan-jepang-jadi-co-investor
Snead, L. L., Hoelzer, D. T., Rieth, M., & Nemith, A. A. N. (2019). Refractory Alloys: Vanadium, Niobium, Molybdenum, Tungsten. Structural Alloys for Nuclear Energy Applications, 585–640. https://doi.org/10.1016/B978-0-12-397046-6.00013-7
Strydom, W. J., Lombaard, J. C., & Pretorius, R. (1985). THERMAL OXIDATION OF THE SILICIDES CoSi2, CrSi2, NiSi2, PtSi, TiSi2, AND ZrSi2. Thin Solid Films, 131(3–4), 215–231. https://doi.org/doi.org/10.1016/0040-6090(85)90142-7
Volders, C., & Reinke, P. (2019). Reaction pathways in the oxidation and pesting of molybdenum disilicide MoSi2 studied with scanning tunneling microscopy and spectroscopy. Surface Science, 681, 134–142. https://doi.org/10.1016/j.susc.2018.11.015
Všianská, M., Pavlů, J., & Šob, M. (2023). Theoretical study of MoSi2/TiSi2 disilicide nanocomposites with vacancies and impurities. Surfaces and Interfaces, 42, 103428. https://doi.org/10.1016/J.SURFIN.2023.103428
Wang, L., Niu, Y., Liu, H., Xi, F., Yu, J., Li, S., Lu, J., Chen, X., Wei, K., & Ma, W. (2024). Preparation of Si/TiSi2 as high-performance anode material for lithium-ion batteries by molten salt electrolysis. Journal of Alloys and Compounds, 1008, 176597. https://doi.org/10.1016/J.JALLCOM.2024.176597
Wei, C. S., Raghavan, G., Dass, M. L. A., Frost, M., Brat, T., & Fraser, D. B. (1989). Comparison of cobalt and titanium silicides for SALICIDE process and shallow junction formation. 241–250. https://doi.org/10.1109/VMIC.1989.78027
Xiang, B., Wang, Q. X., Wang, Z., Zhang, X. Z., Liu, L. Q., Xu, J., & Yu, D. P. (2005). Synthesis and field emission properties of TiSi2 nanowires. Applied Physics Letters, 86(24), 1–3. https://doi.org/10.1063/1.1948515/327907
Xu, J., Jin, M., Shi, X., Li, Q., Gan, C., & Yao, W. (2021). Preparation of tisi2 powders with enhanced lithium-ion storage via chemical oven self-propagating high-temperature synthesis. Nanomaterials, 11(9). https://doi.org/10.3390/nano11092279
Yogatama, B. K. (2023, December 8). Smelter Titanium Senilai 1,3 Triliun Segera Beroperasi - Kompas.id [Titanium Smelter Worth 1.3 Trillion Soon Ready to Operate]. Kompas.Id. https://www.kompas.id/baca/ekonomi/2023/12/08/smelter-titanium-segera-beroperasi
Zhang, C., Liu, A., Li, K., Du, Y., & Yang, P. (2019). One-Step Synthesis of MoS2/TiSi2 via an In Situ Photo-Assisted Reduction Method for Enhanced Photocatalytic H2 Evolution under Simulated Sunlight Illumination. Catalysts 2019, Vol. 9, Page 299, 9(3), 299. https://doi.org/10.3390/CATAL9030299
Zhang, Y., Chen, M., Chen, Z., Wang, Y., Li, S., Duan, P., Zhong, Y., Wu, Z., Guo, X., Yan, Z., & Wang, X. (2021). Constructing cycle-stable Si/TiSi2 composites as anode materials for lithium ion batteries through direct utilization of low-purity Si and Ti-bearing blast furnace slag. Journal of Alloys and Compounds, 876, 160125. https://doi.org/10.1016/J.JALLCOM.2021.160125
Zhang, Y., Lei, Y., Ma, W., & Ren, Y. (2023). Simultaneous recycling of Si and Ti from diamond wire saw silicon powder and Ti–bearing blast furnace slag via reduction smelting: An investigation of the effects of refractories on recycling. Waste Management, 157, 36–46. https://doi.org/10.1016/J.WASMAN.2022.12.008
Zhang, Y., Lei, Y., Ma, W., Zhai, C., Shi, Z., & Ren, Y. (2022). A novel approach for simultaneous recycling of Ti-bearing blast furnace slag, diamond wire saw Si powder, and Al alloy scrap for preparing TiSi2 and Al-Si alloys. Journal of Hazardous Materials, 427, 127905. https://doi.org/10.1016/J.JHAZMAT.2021.127905
DOI: https://doi.org/10.57235/aurelia.v4i2.5202
Refbacks
- There are currently no refbacks.
Copyright (c) 2025 Michael Tulus Samuel Sinurat, Ansori Ansori, Sovian Aritonang, Andy Marjono Putranto

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.